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Abstract. We explain a close relationship between c-sortable elements and torsion
pairs. In particular, we give an explicit description of the cofinite torsion classes in the
context of the Coxeter group. This result allows a proof of some conjectures proposed
by [9].

1. Introduction

Throughout the paper, let K be an algebraically closed field, Q a finite acyclic quiver
and W the Coxeter group of Q. Path algebra KQ is one of the most fundamental classes
of finite dimensional algebras. Recently, Oppermann-Reiten-Thomas gave the following
strong connection between the representation theory of KQ and combinatorics of W as
follows.

Theorem 1. [9] Let cof.quotKQ be the set of cofinite (i.e.,there are only finitely many
indecomposable modules which are not in the category) quotient closed subcategories of
modKQ. Then there is a bijection

W −→ cof.quotKQ.

We denote by Cw the corresponding category for w ∈ W . Our investigation has one of
its primary origins in the following natural questions and the related conjectures posed
in [9, Conjecture 11.1,11.2].
Question.

(a) When is Cw a torsion class of modKQ for w ∈ W ?
(b) When Cw is a torsion class, how can we relate w to a c-sortable element x which

provides the corresponding finite torsion free class ? (see also Corollary 17)

To give answers, we use the theory of preprojective algebras. Preprojective algebras
are a fundamental class of algebras. Recently, close links have been discovered between
preprojective algebras and Coxeter groups [6, 4, 7, 2, 8], and the representation theory
of preprojective algebras can be viewed as providing a categorification of the structure of
the corresponding Coxeter group (see Theorem 8).

2. Preliminary

Notation. For a K-algebra Λ, we denote by modΛ the category of finite dimensional
right Λ-modules. Let X be a Λ-module. We denote by addX (respectively, SubX, FacX)
the full subcategory whose objects are direct summands (respectively, submodules, factor
modules) of finite direct sums of copies of X.

The detailed version of this paper will be submitted for publication elsewhere.



In this section, we recall some definitions and important properties. Throughout this
note, let Q be a finite connected acyclic quiver with vertices Q0 = {1, . . . , n}. We always
assume for simplicity that Q0 are admissibly numbered, that is, we have an arrow j → i,
then j < i.

2.1. Coxeter groups.

Definition 2. The Coxeter group W associated to Q is defined by the generators S :=
{s1, . . . , sn} and relations

• s2i = 1,
• sisj = sjsi if there is no arrow between i and j in Q,
• sisjsi = sjsisj if there is precisely one arrow between i and j in Q.

We denote by w a word, that is, an expression in the free monoid generated by si
for i ∈ Q0 and w its equivalence class in the Coxeter group W . We denote by ≤ the
(right) weak order. An element c = su1 . . . sul

is called a Coxeter element if l = n and
{u1, . . . , ul} = {1, . . . , n}. A Coxeter element c = s1 . . . sn is called admissible with respect
to the orientation of Q. In this note, by a Coxeter element, we mean an admissible one.

Definition 3. Let c be a Coxeter element. Fix a reduced expression of c and regard c as
a reduced word. For w ∈ W , we denote the support of W by supp(w), that is, the set of
generators occurring in a reduced expression of w.

We call an element w ∈ W c-sortable if there exists a reduced expression of w of the
form w = c(0)c(1) . . . c(m), where all c(t) are subwords of c whose supports satisfy

supp(c(m)) ⊆ supp(c(m−1)) ⊆ . . . ⊆ supp(c(1)) ⊆ supp(c(0)) ⊆ Q0.

For the generators S = {s1, . . . , sn}, we let ⟨s⟩ := S \ {s} and denote W⟨s⟩ by the
subgroup of W generated by ⟨s⟩. For any w ∈ W , there is a unique factorization w =
w⟨s⟩ · w⟨s⟩ maximizing ℓ(w⟨s⟩) for w⟨s⟩ ∈ W⟨s⟩ and ℓ(w⟨s⟩) + ℓ(w⟨s⟩) = ℓ(w).
Then we give the following map introduced by Reading [10].

Definition 4. Let c be a Coxeter element and let s be initial in c. Then, define πc(id) = id
and, for each w ∈ W , we define

πc(w) :=

{
sπscs(sw) if ℓ(sw) < ℓ(w)
πsc(w⟨s⟩) if ℓ(sw) > ℓ(w).

Then this has gives the following property.

Theorem 5. [11, Proposition 3.2][13, Corollary 6.2] For any w ∈ W , πc(w) is the unique
maximal c-sortable element below w in the weak order.

Example 6. Let Q be the following quiver

1 // 2 // 3.

Then c = s1s2s3. For example s1s2s3s2 is a c-sortable element, and s1s2s3s2s1 is not.
Let w = s1s2s3s2s1. Then one can check that πc(w) = s1s2s3s2 and it is a unique

maximal c-sortable element below w.



2.2. Preprojective algebras. Next we discuss a relationship between preprojective al-
gebras and the Coxeter groups.

Definition 7. We denote by Q1 the set of arrows of a quiver Q. The preprojective algebra
associated to Q is the algebra

Λ = KQ/⟨
∑
a∈Q1

(aa∗ − a∗a)⟩

where Q is the double quiver of Q, which is obtained from Q by adding for each arrow
a : i→ j in Q1 an arrow a∗ : i← j pointing in the opposite direction.

Let Λ the preprojective algebra of Q. We denote by Ii the two-sided ideal of Λ generated
by 1 − ei, where ei is a primitive idempotent of Λ for i ∈ Q0. We denote by ⟨I1, . . . , In⟩
the set of ideals of Λ which can be written as Iul

· · · Iu1 for some l ≥ 0 and u1, . . . , ul ∈ Q0.
Then we have the following result (see also [7, Theorem 2.14] in the case of Dynkin).

Theorem 8. [4, Theorem III.1.9] There exists a bijection W → ⟨I1, . . . , In⟩. It is given
by w 7→ Iw = Iul

· · · Iu1 for any reduced expression w = su1 · · · sul
.

Note that the product of ideals is taken in the opposite order to the product of expression
of w. This is just because we follow the convention of [9, 3].

Next we briefly recall main results of [9], which give a deep connection between path
algebras, preprojective algebras and the Coxeter groups.

Definition 9. Let Λ be the preprojective algebra of Q. For a Λ-module X, we denote
by XKQ the KQ-module by the restriction, that is, we forget the action of the arrows
a∗ ∈ Q. Moreover we associate the subcategory

resX = addXKQ

∩
modKQ.

In the case of non-Dynkin, we denote by resX the additive category generated by resX
together with all non-preprojective indecomposable KQ-modules.

Then we can give a more precise formulation of Theorem 1 as follows.

Theorem 10. [9] The map w 7→ resIw gives a bijection between the elements of W and
the cofinite (additive) quotient closed subcategories of modKQ.

Example 11. Let Q = (1→ 2→ 3). Then the AR quiver of modKQ is given by
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For example, take w = s1s3. Then, one can check that resIw = add{2, 3, 2
1 ,

3
2 }.

Particularly important class of quotient subcategories is a torsion class. Therefore, it
is quite important to ask when resIw is a torsion class. Our aim is to give an answer to
this question.



2.3. Sortable elements and finite torsion-free classes. Next we recall the notion of
support tilting modules.

Definition 12. [5] For a KQ-module X, we call X support tilting if there exists an
idempotent e of KQ such that X is a tilting (KQ/⟨e⟩)-module.

Then we have the following result (see also [1, Theorem 2.7]).

Theorem 13. [5, Theorem 2.11] Let Q be an acyclic quiver. There is a bijection between
the set stiltKQ of isomorphism classes of basic support tilting KQ-modules and the set
fin.torsKQ of functorially finite torsion classes of modKQ. It is given by stiltKQ ∋ T 7→
FacT ∈ fin.torsKQ and fin.torsKQ ∋ T 7→ P (T ) ∈ stiltKQ, where P (T ) denote the di-
rect sum of one copy of each of the indecomposable Ext-projective of T up to isomorphism.

We also recall layers following [3]. For any reduced word w = su1 . . . sul
, we have the

chain of ideals
Λ ⊃ Iu1 ⊃ Iu2Iu1 ⊃ . . . ⊃ Iul

. . . Iu2Iu1 = Iw.

For j = 1, . . . , l, we define the layer

Lj
w = euj

Lj
w :=

Iuj−1
. . . Iu1

Iuj
. . . Iu1

.

Note that any layer Lj
w is an indecomposable Λ-module for any j = 1, . . . , l [3].

Then, for a c-sortable word, we can give a support tiltingKQ-module and the associated
torsion-free class, which can be explicitly described by layers, as follows.

Theorem 14. [3, Theorem 3.3, 3.11 and Corollary 3.10] Let c be a Coxeter element of Q
and w = c(0)c(1) . . . c(m) = su1 . . . sul

a c-sortable word.

(a) Lj
w is a non-zero indecomposable KQ-module for all j = 1, . . . , l.

Moreover, we denote by Q(0) the quiver Q restricted to the support of c(0). For i ∈ Q
(0)
0 ,

we denote by tw(i) the maximal integer such that utw(i) = i and let

Tw :=
⊕
i∈Q(0)

0

Ltw(i)
w .

(b) Tw is a tilting KQ(0)-module, that is, support tilting KQ-module.
(c) We have SubTw = add{L1

w, . . . , L
l
w} = res(Λ/Iw).

Example 15. Let Q be the following quiver
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Then s1s2s3 is a Coxeter element of Q. Let w = s1s2s3s1s2s1. Then we have
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Hence we have Tw =
3
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1
⊕

3
1 2 3
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1

⊕ 3
1 and

SubTw = add{L1
w, . . . , L

l
w} = res(Λ/Iw).



We call a torsion-free class finite if it has finitely many indecomposable modules. The-
orem 14 implies that a c-sortable element gives a support tilting module and the fi-
nite torsion-free class associated with it. Conversely, any finite torsion-free classes of
mod KQ is given by a support tilting module induced by a c-sortable element as follows.

Theorem 16. [3, Theorem 3.16] Let F be a finite torsion-free class. Then there exists a
unique c-sortable word w such that Tw is a support tilting KQ-module and F = SubTw.

Then, combining with Theorems 14 and 16, we provide the following correspondence.

Corollary 17. [3, Corollary 3.18] The map w 7→ res(Λ/Iw) gives a bijection

{c-sortable elements} ←→ {finite torsion-free classes of modKQ}.

3. Our results

Using the above results, we discuss a connection between torsion pairs of modKQ and
W . Let Q be a finite acyclic quiver, Λ the preprojective algebra of Q, W the Coxeter
group of Q and c the Coxeter element.

First, we introduce the following definition.

Definition 18. A c-sortable element x is called bounded if there exists a positive integer
N such that x ≤ cN . In the Dynkin case, we regard any c-sortable element as bounded.
We denote by wc-sortW the set of bounded c-sortable elements.

Example 19. (a) Let Q be the following quiver

1 // 2 +3 3.

Because

c3 = s1s2s3s1s2s3s1s2s3

= s1s2s3s1s2s1s3s2s3

= s1s2s3s2s1s2s3s2s3,

we have s1s2s3s2 ≤ c3 and hence s1s2s3s2 is bounded c-sortable.
(b) Let Q be the following quiver
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Then one can check that s1s2s3s2 is not bounded c-sortable.

Then we give the following lemma.

Lemma 20. Let x be a c-sortable element. Then the following are equivalent.

(a) x is bounded c-sortable.
(b) Any module of res(Λ/Ix) is a preprojective module.
(c) The corresponding torsion class ⊥(res(Λ/Ix)) is cofinite.



Proof. We only consider the non-Dynkin case.
Then we have res(Λ/IcN ) = add{KQ, τ−(KQ), . . . , τ−N(KQ)}. On the other hand, we

have x ≤ cN if and only if res(Λ/Ix) ⊂ res(Λ/IcN ). Thus it implies the the equivalence of
(a) and (b). The equivalence of (b) and (c) is straightforward from the structure of the
AR quiver. □

Thus, bounded c-sortable elements are essential objects from the viewpoint of the ques-
tion. To give answers to our question, we also introduce the following terminology.

Definition 21. Let x be a c-sortable element. If there exists a maximum element amongst
w ∈ W satisfying πc(w) = x, then we denote it by x̂c = x̂ and call it c-antisortable, fol-
lowing the definition from [12]. We denote by c-compW the set of c-antisortable elements
of W .

Example 22. (a) Let Q be the following quiver

1 // 2 +3 3.

Take a c-sortable element x = s1s2s3s2. Then one can check that x̂ = s1s2s3s2s1.
(b) Let Q be the following quiver

2
""E

EE

1

=={{{
// 3.

Take a c-sortable element x = s1s2s3s2. Consider the following infinite word

s1s2s3s2s1s3s2s1s3s2s1s3s2 · · · .

Then from the word, we can take an arbitrary longer element w such that πc(w) =
x. Thus, x̂ does not exist.

Then our main result is following theorem.

Theorem 23. We have the following bijections:

{cofinite torsion pairs of modKQ}
kk

res(Λ/I(−))
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(resI(−), res(Λ/I(−)))

c-compW
πc(−)

// wc-sortW
(̂−)

oo

Here we call a torsion pair cofinite if the torsion class is cofinite. Thus we can give
a answer to the previous question, confirming a conjecture of [9, Conjecture 11.1]: the
cofinite quotient-closed category resIw is a torsion class precisely if w is c-antisortable.
Moreover, in this case the corresponding torsion free class is the one associated to πc(w),
again confirming a conjecture of [9, Conjecture 11.2]. Thus the theorem implies that
these torsion pairs can be completely controlled by bounded c-sortable elements and c-
antisortable elements.



Example 24. (a) Let Q = (1→ 2→ 3). Then the AR quiver of modKQ is given by
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For example, we take a c-sortable element x = s1s3. Then we have the torsion-
free class res(Λ/Ix) = add{ 1 , 3 } whose modules are circled above. Then one can
check that the corresponding torsion class is add{ 21 , 2 } whose modules are squared
above. By Theorem 10, it is given as resIw for w = s1s3s2s1. Then the theorem
implies that this element gives x̂.

(b) Let Q = (1 → 2 ⇒ 3). Then the preprojective component of the AR quiver of
mod KQ is given as the translation quiver. Thus it is given as the form?>=<89:;•
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For example, we take a c-sortable element x = s1s2s3s2, which is bounded c-
sortable. Then res(Λ/Ix) consists of the modules which are circled above. The
corresponding torsion class consists of the modules which are squared above and
all the rest. It is given as resIw for w = s1s2s3s2s1. Therefore our theorem implies
that we have x̂ = s1s2s3s2s1.
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